[1] Bray E A. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2004,55(407): 2331-2341.[2] Ba?uelos G S, Fakra S C, Walse S S, Marcus M A, Yang S I, Pickering I J, Pilon-Smits E A H, Freeman J L. Selenium accumulation, distribution, and speciation in spineless prickly pear cactus: a drought-and salt-tolerant, selenium-enriched nutraceutical fruit crop for biofortified foods[J]. Plant Physiology, 2011,155(1): 315-327.[3] 彭立新,李德全,束怀瑞. 园艺植物水分胁迫生理及耐旱机制研究进展[J]. 西北植物学报, 2002,22(5): 1275-1281.[4] 季孔庶,孙志勇,方彦. 林木抗旱性研究进展[J]. 南京林业大学学报, 2006,30(6): 123-128.[5] 赵领军,赵善仓. 干旱胁迫下苹果根系内源激素含量的变化[J]. 山东农业科学, 2007,2: 48-49.[6] 张明生,谢波,谈锋. 水分胁迫下甘薯内源激素的变化与品种抗旱性的关系[J]. 中国农业科学, 2002,35(5): 498-501.[7] 王学臣,任海云,娄成后. 干旱协迫下植物根与地上部间的信息传递[J]. 植物生理学通讯, 1992,28(6): 397-402.[8] Jackson M B. Are plant hormones involved in root to shoot communication?[J]. Advances in Botanical Research, 1993,19: 103-187.[9] 梁建生,庞佳音,陈云. 渗透胁迫诱导的植物细胞中脱落酸的合成及其调控机制[J]. 植物生理学通讯, 2001(5): 447-451.[10] 陈立松,刘星辉. 水分胁迫对荔枝叶片内源激素含量的影响[J]. 热带作物学报, 1999,20(3): 31-35.[11] 杨洪强,贾文锁,张大鹏. 失水对苹果新根ABA含量和蛋白激酶活性的影响[J]. 园艺学报, 2000,27(2): 79-84.[12] Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation[J]. The Plant Journal, 2010,61(4): 672-685.[13] Hundertmark M, Hincha D. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana[J]. BMC Genomics, 2008,9(1): 118.[14] Fujii H, Zhu J K. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress[J]. Proceedings of the National Academy of Sciences, 2009,106(20): 8380-8385.[15] Zhang J, Jia W, Yang J, Ismail A M. Role of ABA in integrating plant responses to drought and salt stresses[J]. Field Crops Research, 2006,97(1): 111-119.[16] Pandey D M, Goswami C L, Kumar B. Physiological effects of plant hormones in cotton under drought[J]. Biologia Plantarum, 2003,47(4): 535-540.[17] 王书宏,杜永吉. 外源激素对干旱胁迫下草莓光合特性的影响[J]. 中国农学通报, 2008,24(12): 367-371.[18] 汤日圣,唐现洪,钟雨,张大栋,余永柱,童红玉. 生物源脱落酸(ABA)提高茄苗抗旱能力的效果及机理[J]. 江苏农业学报, 2006,22(1): 10-13.[19] 李长宁,Manoj K S,农倩,李杨瑞. 水分胁迫下外源ABA提高甘蔗抗旱性的作用机制[J]. 作物学报, 2010,36(5): 863-870.[20] Kaur M, Gupta A K, Zhawar V K. Antioxidant response and Lea genes expression under exogenous ABA and water deficit stress in wheat cultivars contrasting in drought tolerance[J]. Journal of Plant Biochemistry and Biotechnology, 2014,13(1): 18-30.[21] Davies W J, Jones H G. Abscisic acid physiology and biochemistry[M]. Oxford: BIOS Scientific Publishers, 1991: 169-211.[22] 张骁,荆家海,卜芸华,王晓东. 2,4-D和乙烯利对玉米幼苗抗旱性效应的研究[J]. 西北植物学报, 1998,18(1): 97-102.[23] 陈善娜,郭浙红. 在低温胁迫下外源ABA对高原水稻自由基清除系统的影响[J]. 云南大学学报, 1996,18(2): 167-172.[24] Pierik R, Sasidharan R, Voesenek L A C J. Growth control by ethylene: adjusting phenotypes to the environment[J]. Journal of Plant Growth Regulation, 2007,26(2): 188-200.[25] Morgan P W, He C J, De Greef J A, De Proft M P. Does water deficit stress promote ethylene synthesis by intact plants?[J]. Plant Physiology, 1990,94(4): 1616-1624.[26] Morgan P W, Drew M C. Ethylene and plant responses to stress[J]. Physiologia Plantarum, 1997,100(3): 620-630.[27] 郭延平,李嘉瑞. 干旱胁迫下杏叶片膜脂脂肪酸组分和乙烯释放及LOX活性的变化[J]. 浙江大学学报, 2002,28(5): 513-517.[28] 郭丽红,王定康,杨晓虹,陈善娜. 外源乙烯利对干旱胁迫过程中玉米幼苗某些抗逆生理指标的影响[J]. 云南大学学报, 2004,26(4): 352-356.[29] 段喜华,孙莲慧,郭晓瑞,王化楠,祖元刚. 拟南芥乙烯突变体在干旱胁迫下的形态学差异[J]. 植物研究, 2009,29(1): 39-42.[30] Yang J C, Zhang J H, Liu K, Wang Z Q, Liu L J. Involvement of polyamines in the drought resistance of rice[J]. Journal of Experimental Botany, 2007,58(6): 1545-1555.[31] 刘义,张春梅,谢晓蓉,闫芳,胡丹. 干旱胁迫对紫花苜蓿叶片和根系多胺代谢的影响[J]. 草业学报, 2012,21(6): 102-107.[32] 刘律新,胡浩斌,赵国林. 干旱胁迫下多裂骆驼蓬(Peganum multisectum Bobr)叶片乙烯释放和多胺含量变化与活性氧积累的关系[J]. 生态学报, 2008,28(4): 1579-1585.[33] 胡景江,左仲武. 外源多胺对油松幼苗生长及抗旱性的影响[J]. 西北林学院学报, 2004,19(4): 5-8.[34] Farooq M, Wahid A, Lee D J. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties[J]. Acta Physiologiae Plantarum, 2009,31(5): 937-945.[35] 刘瑞显,郭文琦,陈兵林,周治国. 氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响[J]. 作物学报, 2008,34(9): 1598-1607.[36] 罗宏海,韩焕勇,张亚黎,张旺锋. 干旱和复水对膜下滴灌棉花根系及叶片内源激素含量的影响[J]. 应用生态学报. 2013(4): 1009-1016.[37] 张爱军,商振清,董永华,李广敏,张晓红. 6-BA和KT对干旱条件下小麦旗叶甘油醛-3-磷酸脱氢酶及光合作用的影响[J]. 河北农业大学学报, 2000,23(2): 37-41.[38] 陈杰忠,赵红业,叶自行. 水分胁迫对芒果成花效应及内源激素变化的影响[J]. 热带作物学报, 2000,21(2): 74-79.[39] 刘瑞香,杨劼,高丽. 中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J]. 水土保持学报, 2005,19(3): 148-151.[40] 何卫军,焦旭亮,张振文,惠竹梅. 不同干旱胁迫水平下赤霞珠和黑比诺幼苗内源激素水平比较[J]. 干旱地区农业研究, 2008,26(3): 142-145.[41] 闫志利,轩春香,牛俊义,席玲玲,刘建华,赵天武. 干旱胁迫及复水对豌豆根系内源激素含量的影响[J]. 中国生态农业学报, 2009(2): 297-301.[42] 刘长海,周莎莎,邹养军,梁东,马锋旺. 干旱胁迫条件下不同抗旱性苹果砧木内源激素含量的变化[J]. 干旱地区农业研究, 2012,30(5): 94-98.[43] 王玮,李德全,杨兴洪,邹琦,周燮,杨军. 水分胁迫对不同抗旱性小麦品种芽根生长过程中IAA、ABA含量的影响[J]. 作物学报, 2000,26(6): 737-742.[44] 梁鹏,邢兴华,周琴,韩亮亮,田一丹,张国正,邢邯,江海东. α-萘乙酸对干旱和复水处理下大豆幼苗生长和光合作用的影响[J]. 大豆科学, 2011,30(1): 50-55.[45] 张骁,荆家海. 水分胁迫下2,4-D和乙烯利对玉米幼苗光合特性的影响[J]. 干旱地区农业研究, 1997,15(4): 78-81.[46] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. Journal of experimental Botany, 2007,58(2): 221-227.[47] Bai T H, Yin R, Li C Y, Ma F W, Yue Z Y, Shu H R. Comparative analysis of endogenous hormones in leaves and roots of two contrasting Malus species in response to hypoxia stress[J]. Journal of Plant Growth Regulation, 2011,30(2): 119-127.[48] 代勋,李忠光,龚明. 赤霉素、钙和甜菜碱对小桐子种子萌发及幼苗抗低温和干旱的影响[J]. 植物科学学报, 2012,30(2): 204-212.[49] Espasandin F D, Maiale S J, Calzadilla P, Ruiz O A, Sansberro P A. Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants[J]. Plant Physiology and Biochemistry. 2014,76: 29-35.[50] Neves D M, Coelho Filho M A, Bellete B S, Silva M F G F, Souza D T, Soares Filho W D S, Costa M G C, Gesteira A S. Comparative study of putative 9-cis-epoxycarotenoid dioxygenase and abscisic acid accumulation in the responses of sunki mandarin and rangpur lime to water deficit[J]. Molecular Biology Reports, 2013,40: 5339-5349. |