Subtropical Plant Science ›› 2014, Vol. 43 ›› Issue (04): 329-338.DOI: 10.3969/j.issn.1009-7791.2014.04.016
Previous Articles Next Articles
GUO Xue-min,LIU Jian-zhen,LIU Yong-jun,XIAO Xiao,GAO Rong-fu
Received:
2014-09-30
Revised:
2015-01-26
Online:
2014-12-10
Published:
2014-12-10
Contact:
GUO Xue-min
郭学民,刘建珍,刘永军,肖啸,高荣孚
通讯作者:
郭学民
作者简介:
郭学民,博士,教授,从事植物结构生理学研究。
基金资助:
河北省自然科学基金项目(C2014407077)
CLC Number:
GUO Xue-min,LIU Jian-zhen,LIU Yong-jun,XIAO Xiao,GAO Rong-fu. Overview of Cold Resistance in Woody Plants[J]. Subtropical Plant Science, 2014, 43(04): 329-338.
郭学民,刘建珍,刘永军,肖啸,高荣孚. 木本植物抗寒性概述(综述)[J]. 亚热带植物科学, 2014, 43(04): 329-338.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.yrdzwkx.com/EN/10.3969/j.issn.1009-7791.2014.04.016
[1] Steponkus P L. Role of the plasma membrane in freezing injury and cold acclimation[J]. Annual Review of Plant Physiology, 1984,35: 543—583.[2] Levitt J. Response of Plants to Environmental Stress[M]. New York: Academic Press, 1972.[3] Thomashow M F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999,50: 571—599.[4] Xin Z, Browse J. Cold comfort farm: the acclimation of plants to freezing temperatures[J]. Plant Cell Environment, 2000,23: 893—902.[5] Artlip A, Wisniewski M. Induction of Proteins in Response to Biotic and Abiotic Stress[M]. New York: Marcel Dekker, 2001.[6] Thomashow M. So what’s new in the field of plant cold acclimation? Lots![J]. Plant Physiology, 2001,125: 89—93.[7] Wiegand K M. The occurrence of ice in plant tissue[J]. Plant World, 1906,9: 25—39.[8] Maximov N A. Chemische schutzmittel der pflanzen gegen erfrieren[J]. Berichteder Deutschen Botanischen Gesellschaft, 1912,30(6): 52—65.[9] Siminovitch D, Levitt J. The relation between frost resistance and the physical state of the protoplasm. II. The protoplasmic surface[J]. Canadian Journal of Research, 1941,9c: 92—100.[10] Burke M J, Nozzolillo C. In memoriam: David Siminovitch (1916–2001)[J]. Cryobiology, 2002,44: 1—3.[11] Palta J P, Li P H. Cell Membrane Properties in Relation to Freezing Injury[M]. New York: Academic Press, 1978.[12] Palta J P, Li P H. Alterations in membrane transport properties by freezing injury in herbaceous plants: Evidence against the rupture theory[J]. Physiologia Plantarum, 1980,50: 169—175.[13] Quamme H A, Weiser C J, Stushnoff C. The mechanism of freezing injury in xylem of winter apple twigs[J]. Plant Physiology, 1973,51: 273—277.[14] Weiser C J. Cold resistance and injury in woody plants[J]. Science, 1970,169: 1269—1278.[15] Levitt J. Response of Plant to Environmental Stresses. Water, radiation, salt and other stress(2nd ed.)[M]. New York: Academic Press, 1980.[16] Maki L R, Galyan E L, Chang C, Caldwell D R. Ice nucleation induced by Pseudomonas syringae[J]. Applied and Environmental Microbiology, 1974,28: 456—460.[17] 孙福在,赵廷昌. 冰核细菌生物学特性及其诱发植物霜冻机理与防霜应用[J]. 生态学报, 2003,23(2): 336—345.[18] 胡爱民,张世光. 冰核活性菌的研究进展[J]. 云南农业大学学报, 1999,14(2): 219—222.[19] Ashworth E N, Kieft T L. Ice nucleation activity associated with plants and fungi[M]// Lee R E, Jr Warren G J, Gusta L V. Biological Ice Nucleation and its Applications. Minneapolis, Minn: APS Press, 1995: 137—162.[20] Ball M C, Wolfe J, Canny M, Hoffman M, Nicotra A B, Hughes D. Space and time dependence of temperature and freezing in evergreen leaves[J]. Functional Plant Biology, 2002,29(11): 1259—1272.[21] Wisniewski M, Lindow S E, Ashworth E N. Observations of ice nucleation and propagation in plants using infrared thermography[J]. Plant Physiology, 1997,113: 327—334.[22] Workmaster B A, Palta J P, Wisniewski M. Ice nucleation and propagation in cranberry uprights and fruit using infrared video thermography[J]. Journal of the American Society for Horticultural Science, 1999,124: 619—625.[23] Wisniewski M, Fuller M, Glenn D M, Gusta L V, Duman J, Griffith M. Extrinsic ice nucleation in plants: What are the factors and can they be manipulated[M]// Li P H, Palva E T. Plant Cold Hardiness: Gene Regulation and Genetic Engineering. New York: Kluwer Academic/Plenum Publish, 2002.[24] Wisniewski M, Glenn D M, Fuller M. Use of a hydrophobic particle film as a barrier to extrinsic ice nucleation in tomato plants[J]. Journal of the American Society for Horticultural Science, 2002,127: 358—364.[25] Burke M J, Stushnoff C. Frost hardiness: A discussion of possible molecular causes of injury with particular reference to deep supercooling of water[M]// Mussel H, Staples R C. Stress Physiology of Crop Plants. New York: Wiley-Interscience, 1979.[26] Fujikawa S, Kuroda K. Cryo-scanning electron microscopic study on freezing behavior of xylem ray parenchyma cells in hardwood species[J]. Micron, 2000,31: 669—686.[27] Sakai A, Larcher W. Frost Survival of Plants[M]. Berlin: Springer, 1987.[28] Wisniewski M, Arora R. Structural and biochemical aspects of cold hardiness in woody plants[M]// Jain S M, Minocha S C. Molecular Biology of Woody Plants. Dordrecht: Kluwer Academic Publish, 2000.[29] Scarth G W, Levitt J. The frost hardening mechanism of plant cells[J]. Plant Physiology, 1937,12: 51—78.[30] Wisniewski M, Davis G. Immunogold localization of pectins and glycoproteins in tissues of peach with reference to deep supercooling[J]. Trees, 1995,9: 253—260.[31] Quamme H. Deep supercooling in buds of woody plants[M]// Lee R E, Jr Warren G J, Gusta L V. Biological Ice Nucleation and its Applications. St. Paul, Minn: APS Press, 1995.[32] Hong S, Sucoff E. Units of freezing of deep supercooled water in woody xylem[J]. Plant Physiology, 1980,66: 40—45.[33] George M F, Burke M J, Pellet H M, Johnson A G. Low temperature exotherms and woody plant distribution[J]. HortScience, 1974,9: 519—522.[34] Wisniewski M, Davis G, Schaffer K. Mediation of deep supercooling of peach and dogwood by enzymatic modifications in cell-wall structure[J]. Planta, 1991,184: 254—260.[35] Kuroda K, Kasuga J, Arakawa K, Fujikawa S. Xylem ray parenchymacells in boreal hardwood species respond to subfreezing termperatures by deep supercooling that is accompanied by incomplete desiccation[J]. Plant Physiology, 2003,131: 736—744.[36] Gusta L V, Tyler N J, Chen T H H. Deep undercooling in woody taxa growing north of the –40 °C isotherm[J]. Plant Physiology, 1983,72: 122—128.[37] Chen T H H, Burke M J, Gusta L V. Freezing tolerance in plants: An overview[M]// Lee R E, Jr Warren G J, Gusta L V. Biological Ice Nucleation and its Applications. Minneapolis, Minn.: APS Press , 1995.[38] Hirsh A G, Williams R J, Merryman H T. A novel method of natural cryopreservation: Intracellular glass formation in deeply frozen Populus[J]. Plant Physiology, 1985,79: 41—56.[39] Steponkus P L, Lang R, Fujikawa S. Cryopreservation of plant tissues by vitrifications[M]// Steponkus P L. Advances in Low-temperature Biology. London: JAI Press, Ltd., 1992.[40] Fuchigami L H, Evert D R, Weiser C J. A translocatable cold hardiness promoter[J]. Plant Physiology, 1970,47: 164—167.[41] Juntilla O, Welling A, Li C, Tsegay B A, Palva E T. Physiological aspects of cold hardiness in northern deciduous tree species[M]// Li P H, Palva E T. Plant Cold Hardiness: Gene Regulation and Genetic Engineering. New York: Kluwer Academic/Plenum Publish, 2002.[42] Browse J, Xin Z. Temperature sensing and cold acclimation[J]. Current Opinion in Plant Biology, 2001,4: 241—246.[43] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways[J]. Current Opinion in Plant Biology, 2000,3: 217—223.[44] Steponkus P L, Uemura M, Joseph R A, Gilmour S J, Thomashow M F. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana[J]. Proceedings of the National Academy of Science USA, 1998,95: 14570—14575.[45] Guy C L. Cold acclimation and freezing tolerance: Role of protein metabolism[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1990,41: 187—223.[46] Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Yoshida S, Fujikawa S. Accumulation of small heat-shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation[J]. Plant Physiology, 1999,120: 481—490.[47] Llorente F, Lopez-Cobollo R M, Catala R, Martinez-Zapater J M, Salinas J. A novel cold-inducible gene from Arabidopsis, RCI3 encodes a peroxidase that constitutes a component for stress tolerance[J]. Plant Journal, 2002,32: 13—24.[48] Seppanen M M, Cardi T, Hyokki M B, Pehu E. Characterization and expression of cold-induced glutathione S-transferase in freezing tolerant Solanum commersonii, sensitive S. tuberosum and their interspecific somatic hybrids[J]. Plant Sciences, 2000,153: 125—133.[49] Yeh S, Moffatt B A, Griffith M, Xiong F, Yang D S, Wiseman S B, Sarhan F, Danyluk J, Xue Y Q, Hew C L, Doherty-Kirby A, Lajoie G. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals[J]. Plant Physiology, 2000,124: 1251—1264.[50] Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana[J]. Plant Journal, 2002,29: 417—426.[51] Xing W, Rajashekar C B. Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana[J]. Environmental and Experimental Botany, 2001,46: 21—28.[52] Close T J. Dehydrins: A commonalty in the response of plants to dehydration and low temperature[J]. Physiology Plantarum, 1997,100: 291—296.[53] Sarnighausen E, Karlson D, Ashworth E. Seasonal regulation of a 24-kDa protein from red-osier dogwood (Cornus sericea) xylem[J]. Tree Physiology, 2002,22: 423—430.[54] Kaye C, Neven L, Hofig A, Li Q B, Haskell D, Guy C. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimated proteins in tobacco[J]. Plant Physiology, 1998,116: 1367—1377.[55] Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress[J]. Plant Cell, 2002(S14): 165—183.[56] Sangwan V, Dhindsa R S. In vivo and in vitro activation of temperature-responsive plant map kinases[J]. FEBS Letters, 2002,531: 561—564.[57] Agrawal G K, Agrawal S K, Shibato J, Iwahashi H, Rakwal R. Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation[J]. Biochem and Biophysiology. Research Communictions, 2003,300: 775—783.[58] Monroy A F, Dhindsa R S. Low-temperature signal transduction: Induction of cold acclimation-specific genes of alfalfa by calcium at 25 ℃[J]. Plant Cell, 1995,7(3): 321—331.[59] Wu Y, Kuzma J, Marechal E, Graeff R, Lee H C, Foster R, Chua N H. Abscisic acid signaling through cyclic ADP-ribose in plants[J]. Science, 1997,278: 2126—2130.[60] Meskiene I, Bogre L, Glaser W, Balog J, Brandstotter M, Zwerger K, Ammerer G, Hirt H. MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants[J]. Proceedings of the National Academy of Science, USA, 1998,95: 1938—1943.[61] Kim K M, Sohn J K, Chung I K. Analysis of OPT8511 RAPD fragments closely linked with cold sensitivity at the seedling stage in rice (Oryza sativa L.)[J]. Molecular Cells, 2000,10: 382—385.[62] Cai Q, Guy C L, Moore G A. Extension of the linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation-responsive loci[J]. Theoretical and Applied Genetics, 1994,89: 606—614.[63] Bliss F, Arulsekar S, Foolad M R, Becerra V, Gillen A M, Warburton M L, Dandekar A M, Kocsisne G M, Mydin K K. An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach[J]. Genome, 2002,45: 520—529.[64] Knight H, Veale E L, Warren G J, Knight M R. The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif[J]. Plant Cell, 1999,11: 875—886.[65] Xin Z, Browse J. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant[J]. Proceedings of the National Academy of Science, USA, 1998,95: 7799—7804.[66] Llorente F, Oliveros J C, Martinez-Zapater J M, Salinas J. A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele[J]. Planta, 2000,211: 648—655.[67] Baker S S, Wilhelm K S, Thomashow M F. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression[J]. Plant Molecular Biology, 1994,24: 701—713.[68] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. Plant Cell, 1994,6: 251—264.[69] Liu O, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-response gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998,10: 1391—1406.[70] Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu J K. LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase[J]. EMBO Journal, 2002,21: 2692—2702.[71] Wang Y, Hua J. Amoderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance[J]. Plant Journal, 2009,60: 340—349.[72] Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems[J]. Plant Journal, 2004,38: 982—993. [73] Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses[J]. Biochemica et Biophysica Acta, 2012,1819: 86—96.[74] Wisniewski M, Nassuth A, Teulières C, Marque C, Rowland J, Cao P B, Brown A. Genomics of cold hardiness in woody plants[J]. Critical Reviews in Plant Sciences, 2014,33: 92—124.[75] Janská A, Mar?ik P, Zelenková S, Ovesná J. Cold stress and acclimation – what is important for metabolic adjustment?[J] Plant Biology, 2010,12: 395—405.[76] Hara M. The multifunctionality of dehydrins[J]. Plant Signal Behavior, 2010,5: 1—6.[77] Hanin M, Brini- Fai?al B, Toda Y, Takeda S, Masmoudi K. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms[J]. Plant Signal Behavior, 2011,6: 1503—1509.[78] Burchett S, Niven S, Fuller M P. The effect of cold-acclimation on the water relations and freezing tolerance Hordeum vulgare L.[J]. CryoLetters, 2006,27: 295—303.[79] Rekarte-Cowie I, Ebshish O S, Mohammed K, Pearce R S. Sucrose helps regulate cold acclimation of Arabidopsis thaliana[J]. Journal of Experimental Botany, 2008,59: 4205—4217.[80] Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. Plant Cell, 2002,14: 1675—690.[81] Tafforeau M, Verdus M C, Charlionet R, Cabin-Flaman A, Ripoll C. Two-dimensional electrophoresis investigation of short-term response of flax seedlings to a cold shock[J]. Electrophoresis, 2002,23: 2534—2540.[82] Komatsu S,Yamada E,Furukawa K. Cold stress changes the concanavalin a-positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths[J]. Amino Acids, 2008,36(6): 1l5—l23.[83] Lee D G, Ahsana N, Lee S H, Lee J J, Bahk J D, Kang K Y, Lee B H. Chilling stress-induced proteomic changes in rice roots[J]. Journal of Plant Physiology, 2009,166: 1—11.[84] Tamminen I, Makela P, Heino P, Palva E T. Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana[J]. Plant Journal, 2001,25: 1—8.[85] Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J]. Plant Physiology, 2000, 124: 1854—1865. [86] Huang T, Nicodemus J, Zarka D G, Thomashow M F, Wisniewski M, Duman J G. Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature[J]. Plant Molecular Biology, 2002,50: 333—344.[87] Tahtiharju S, Palva T. Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana[J]. Plant Journal, 2001,26: 461—470.[88] Greiner S, Rausch T, Sonnewald U, Herbers K. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers[J]. Nature Biotechnology, 1999,17: 708—711.[89] Benedict C, Skinner J S, Meng R, Chang Y, Bhalerao R, Huner N P A, Finn C E, Chen T H H, Hurry V. The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in Populus spp[J]. Plant Cell Environment, 2006,29: 1259—1272.[90] Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness[J]. Planta, 2011,233: 971—983. |
[1] | XIAO Jia-liang, WU Lin-fang, LI Rong-sheng, HUANG Xiao-sa, QIN Qiao-mei. Community Characteristics of Woody Plants at Nanshan Nature Reserve of Shixing, Guangdong Province [J]. Subtropical Plant Science, 2021, 50(01): 51-56. |
[2] | ZHOU Jing-wen, DING Yu-jiao, ZENG Xiao-rong, Ganesh K. Jaganathan, LIU Bao-lin, HAN Ying-ying. Relationship Between Freezing Tolerance and Fatty Acid Biosynthesis in Lettuce Seeds after Low Temperature Treatment [J]. Subtropical Plant Science, 2020, 49(01): 9-14. |
[3] | CHI Min-jie, LIU Yu-mei. Physiological Response and Cold Resistance Evaluation of Three Species of Annona to Low Temperature Stress [J]. Subtropical Plant Science, 2019, 48(04): 339-342. |
[4] | HONG Wen-hong,DONG Bin,HUANG Yong-fang,TAN Sha. Comprehensive Evaluation of Physiological Responses to Low Temperature Stress and Cold Resistance of Three Species of Camellia Seedlings [J]. Subtropical Plant Science, 2016, 45(02): 117-121. |
[5] | ZENG Huan-chen,LI Wen-bin,ZHANG Jian-wen,HAN Xi-jun,WEN Han-hua,ZHANG Lu. Indigenous Woody Plant Resources and Their Introduction Potential in Yinpingshan Nature Reserve of Dongguan, Guangdong [J]. Subtropical Plant Science, 2013, 42(04): 345-349. |
[6] | YU Yan-hua. Effects of Low Temperature Stress on Physiological Characteristics of Parakmeria lotungensis [J]. Subtropical Plant Science, 2012, 41(04): 31-34. |
[7] | GUO Xiang-quan, XU Shao-hong, ZHENG Jing-chi, LIN Fang-liang, XU Jie-mei, LIU Jin-shan. The Selection of Elite Trees of Eucalyptus grandis with Cold Resistance and Fast-growing Characteristics in the Middle Part of Fujian Province [J]. Subtropical Plant Science, 2004, 33(04): 45-47,51. |
[8] | LIU Jin-ping, YOU Ming-hong, MAO Kai, ZHANG Xin-quan. Effects of foliar spray of N and Fe on cold resistance of centipedegrass in late autumn [J]. Subtropical Plant Science, 2004, 33(01): 12-15. |
[9] | YE Gong-fu, ZHU Shi-wei, LUO You-ning, LIN Jie, SHEN De-yan. Phonological phase and cold resistance of introduced tree species in hill mountains in Southern Fujian [J]. Subtropical Plant Science, 2004, 33(01): 31-36,41. |
[10] | Lai Menghong, Guo Jinquan, Chen Wentao. Effects of Exogenous Cholesterol on Mcmbrane Lipids and Cold Resistance of Rice Seedlings [J]. Subtropical Plant Science, 1996, 25(01): 8-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||