Subtropical Plant Science ›› 2025, Vol. 54 ›› Issue (5): 578-586.DOI: 10.3969/j.issn.1009-7791.2025.05.013
• Reviews • Previous Articles Next Articles
LI Qiu-jia1, QIU Bing-hui1, LI Ling-yu1, CHEN Shuang2, YU Ke-qin1*
Received:2025-04-27
Accepted:2025-09-01
Online:2025-10-31
Published:2025-12-17
Contact:
YU Ke-qin
李秋佳1,邱秉慧1,李凌雨1,陈 爽2,余克琴1*
通讯作者:
余克琴
基金资助:CLC Number:
LI Qiu-jia, QIU Bing-hui, LI Ling-yu, CHEN Shuang, YU Ke-qin. Advances in Plant Three-Dimensional Genomics Research[J]. Subtropical Plant Science, 2025, 54(5): 578-586.
李秋佳, 邱秉慧, 李凌雨, 陈 爽, 余克琴. 植物三维基因组学研究进展[J]. 亚热带植物科学, 2025, 54(5): 578-586.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.yrdzwkx.com/EN/10.3969/j.issn.1009-7791.2025.05.013
| [1] 李国亮, 阮一骏, 谷瑞升, 杜生明. 起航三维基因组学研究[J]. 科学通报, 2014, 59: 1165–1174. [2] Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation [J]. Science, 2002, 295: 1306–1311. [3] Lieberman-Aiden E, Van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O. Comprehensive mapping of long-range interactions reveals folding principles of the human genome [J]. Science, 2009, 326(5950): 289. [4] Rao S S, Huntley M H, Durand N C, Stamenova E K, Bochkov I D, Robinson J T, Sanborn A L, Machol I, Omer A D, Lander E S. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping [J]. Cell, 2014, 159(7): 1665–1680. [5] Hughes J R, Roberts N, Mcgowan S, Hay D, Giannoulatou E, Lynch M, De Gobbi M, Taylor S, Gibbons R, Higgs D R. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment [J]. Nature Genetics, 2014, 46(2): 205–212. [6] Ma W, Ay F, Lee C, Duan Z. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes [J]. Nature Methods, 2014, 12(1): 71–78. [7] Nagano T, Lubling Y, Stevens T J, Schoenfelder S, Yaffe E, Dean W, Laue E D, Tanay A, Fraser P. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure [J]. Nature, 2013, 502(7469): 59. [8] Fang R, Yu M, Li G, Chee S, Liu T, Schmitt A D, Ren B. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq [J]. Cell Research, 2016, 26(12): 1345–1348. [9] Fullwood M J, Liu M H, Pan Y F, Liu J, Al H X E. An oestrogen- receptor-alpha-bound human chromatin interactome [J]. Nature, 2009, 462(7269): 58. [10] Mumbach M R, Rubin A J, Flynn R A, Dai C, Chang H Y. HiChIP: efficient and sensitive analysis of protein-directed genome architecture [J]. Nature Methods, 2016, 13(11): 919–922. [11] Li X, Luo O J, Wang P, Zheng M, Wang D, Piecuch E, Zhu J J, Tian S Z, Tang Z, Li G. Long-read ChIA-PET for base-pair-resolution mapping of haplotype-specific chromatin interactions [J]. Nature Protocols, 2017, 12(5): 899–915. [12] Sridhar B, Rivas-Astroza M, Nguyen T C, Chen W, Yan Z, Cao X, Hebert L, Zhong S. Systematic mapping of RNA-chromatin interactions in Vivo [J]. Current Biology, 2017, 27(4): 602–609. [13] Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding [J]. Cell, 2013, 153(3): 654–665. [14] Keene J D, Komisarow J M, Friedersdorf M B. RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts [J]. Nature Protocols, 2006, 1(1): 302–307. [15] Yin Z, Shujuan X, Hui X U, Lianghu Q U. CLIP: viewing the RNA world from an RNA–protein interactome perspective [J]. Science China, 2015, 58(1): 75–88. [16] Li X, Zhou B, Chen L, Gou L T, Li H, Fu X D. GRID-seq reveals the global RNA-chromatin interactome [J]. Nature Biotechnology, 2017, 35(10): 940–950. [17] Quinodoz S A, Noah O, Barbara T, Ali P, Marten S J, Elizabeth D, Lai M M, Shishkin A A, Prashant B, Yodai T. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus [J]. Cell, 2018, 174(3): 744–757. [18] You Q, Cheng A Y, Gu X, Harada B T, He C. Direct DNA crosslinking with CAP-C uncovers transcription-dependent chromatin organization at high resolution [J]. Nature Biotechnology, 2020, 39(2): 225–235. [19] Zheng M, Tian S Z, Capurso D, Kim M, Maurya R, Lee B, Piecuch E, Gong L, Zhu J J, Li Z, Wong C H, Ngan C Y, Wang P, Ruan X, Wei C L, Ruan Y. Multiplex chromatin interactions with single-molecule precision [J]. Nature, 2019, 566(7745): 558–562. [20] Ouyang W, Xiong D, Li G. Unraveling the 3D Genome Architecture in plants: present and future [J]. Molecular Plant, 2020, 13(12): 1676–1693. [21] Pontvianne F, Liu C. Chromatin domains in space and their functional implications [J]. Current Opinion In Plant Biology, 2020, 54: 1–10. [22] Long Y, Wendel J F, Zhang X, Wang M. Evolutionary insights into the organization of chromatin structure and landscape of transcriptional regulation in plants [J]. Trends in Plant Science, 2024, 29(6): 638–649. [23] Chen C, Wu S, Sun Y, Zhou J, Chen Y, Zhang J, Birchler J A, Han F, Yang N, Su H. Three near-complete genome assemblies reveal substantial centromere dynamics from diploid to tetraploid in Brachypodium genus [J]. Genome Biology, 2024, 25(1): 63. [24] Domb K, Wang N, Hummel G, Liu C. Spatial features and functional implications of plant 3D genome organization [J]. Annual Review of Plant Biology, 2022, 73: 173–200. [25] Wang M J, Lin P C, Ye M, Li Z X, Tu G L. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton [J]. Nature Plants, 2018, 4(2): 90–97. [26] Sun L, Jing Y, Liu X, Li Q, Xue Z, Cheng Z, Wang D, He H, Qian W. Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis [J]. Nature Communications, 2020, 11(1): 1886. [27] Dong P, Tu X, Chu P Y, Lü P, Zhu N, Grierson D, Du B, Li P, Zhong S. 3D Chromatin architecture of large plant genomes determined by local A/B compartments [J]. Molecular Plant, 2017, 10(12): 1497. [28] Zhang Y, Mccord R, Ho Y J, Lajoie B, Hildebrand D, Simon A, Becker M, Alt F, Dekker J. Spatial Organization of the mouse genome and its role in recurrent chromosomal translocations [J]. Cell, 2012, 148(5): 908–921. [29] Ren G, Jin W F, Cui K R, Rodrigez J, Zhang G Q. CTCF-mediated enhancer-promoter interaction is a critical regulator of cell-to-cell variation of gene expression [J]. Molecular Cell, 2017, 67(6): 1049–1058. [30] Ulianov S V, Khrameeva E E, Gavrilov A A, Flyamer I M, Kos P, Mikhaleva E A, Penin A A, Logacheva M D, Imakaev M V, Chertovich A. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains [J]. Genome Research, 2015, 26(1): 70–84. [31] Van Steensel B, Furlong E E M. The role of transcription in shaping the spatial organization of the genome [J]. Nature Reviews Molecular Cell Biology, 2019, 20(6): 327–337. [32] Liao Y, Wang J, Zhu Z, Liu Y, Chen J, Zhou Y, Liu F, Lei J, Gaut B S, Cao B. The 3D architecture of the pepper genome and its relationship to function and evolution [J]. Nature Communications, 2022, 13(1): 3479. [33] Wang M, Li J, Qi Z, Long Y, Pei L, Huang X, Grover C E, Du X, Xia C, Wang P, Liu Z, You J, Tian X, Ma Y, Wang R, Chen X, He X, Fang D D, Sun Y, Tu L, Jin S, Zhu L, Wendel J F, Zhang X. Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium [J]. Nature Genetics, 2022, 54(12): 1959–1971. [34] Sun Y, Dong L, Zhang Y, Lin D, Yang F. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize [J]. Genome Biology, 2020, 21(1): 143. [35] Zhou S, Jiang W, Zhao Y, Zhou D X. Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes [J]. Nature Plants, 2019, 5(8): 795–800. [36] Moissiard G, Cokus S J, Cary J, Feng S, Billi A C, Stroud H, Husmann D, Zhan Y, Lajoie B R, Mccord R P. MORC family ATPases required for heterochromatin condensation and gene silencing [J]. American Association for the Advancement of Science, 2012, 336(6087): 1448–1451. [37] Feng S, Cokus S J, Schubert V, Zhai J, Pellegrini M, Jacobsen S E. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis [J]. Molecular Cell, 2014, 55(5): 694–707. [38] Grob S, Schmid M W, Grossniklaus U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila [J]. Molecular Cell, 2014, 55(5): 678–693. [39] Wang C, Liu C, Roqueiro D, Grimm D, Schwab R, Becker C, Lanz C, Weigel D. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana [J]. Genome Research, 2015, 25(2): 246–256. [40] Liu C, Wang C, Wang G, Becker C, Zaidem M, Weigel D. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution [J]. Genome Research, 2016, 26(8): 1057–1068. [41] Hu B, Wang N, Bi X, Karaaslan E S, Liu C. Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery [J]. Genome biology, 2019, 20(1): 87. [42] Xie T, Zhang F G, Zhang H Y, Wang X T, Wu X M. Biased gene retention during diploidization in Brassica linked to three-dimensional genome organization [J]. Nature Plants, 2019, 5(8): 822–832. [43] Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication [J]. Nature Genetics, 2017, 49(4): 579. [44] Liu C, Cheng Y J, Wang J W, Weigel D. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis [J]. Nature plants, 2017, 3(9): 742–748. [45] Dong Q, Li N, Li X, Yuan Z, Xie D, Wang X, Li J, Yu Y, Wang J, Ding B. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice [J]. Plant Journal, 2018, 94(6): 1141–1156. [46] Dong P, Tu X, Li H, Zhang J, Grierson D, Li P, Zhong S. Tissue-specific Hi-C analyses of rice, foxtail millet and maize suggest non-canonical function of plant chromatin domains [J]. Journal of Integrative Plant Biology, 2020, 62(2): 201–217. [47] Zhou S, Jiang W, Zhao Y, Zhou D X. Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes [J]. Nature Plants, 2019, 5(8): 795–800. [48] Peng Y, Xiong D, Zhao L, Ouyang W, Li X. Chromatin interaction maps reveal genetic regulation for quantitative traits in maize [J]. Nature Communications, 2019, 10(1): 2632. [49] Li E, Liu H, Huang L, Zhang X, Dong X, Song W, Zhao H, Lai J. Long-range interactions between proximal and distal regulatory regions in maize [J]. Nature Communications, 2019, 10(1): 2633. [50] Ricci W A, Lu Z, Ji L, Marand A P, Zhang X. Widespread long-range cis-regulatory elements in the maize genome [J]. Nature Plants, 2019, 5(12): 1–13. [51] Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S O, Wicker T, Radchuk V, Dockter C, Hedley P E, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X Q, Zhang Q, Barrero R A, Li L, Taudien S, Groth M, Felder M, Hastie A, ?imková H, Staňková H, Vrána J, Chan S, Mu?oz–Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva–Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, Mccooke J K, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland J A, Bellgard M I, Borisjuk L, Houben A, Dole?el J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer G J, Clark M D, Caccamo M, Schulman A H, Mayer K F X, Platzer M, Close T J, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome [J]. Nature, 2017, 544(7651): 427–433. [52] Concia L, Veluchamy A, Ramirezprado J S, Martinramirez A, Huang Y, Perez M, Domenichini S, Rodriguez Granados N Y, Kim S K, Blein T. Wheat chromatin architecture is organized in genome territories and transcription factories [J]. Genome Biology, 2020, 21(1): 104. [53] Louwers M, Bader R, Haring M, Driel R V, Stam L M. Tissue- and Expression level-specific chromatin looping at maize b1 epialleles [J]. Plant Cell, 2009, 21(3): 832–842. [54] Crevillén P, Sonmez C, Wu Z, Dean C. A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization [J]. The EMBO Journal, 2013, 32(1): 140–148. [55] Liu L, Adrian J, Pankin A, Hu J, Dong X, Von Korff M, Turck F. Induced and natural variation of promoter length modulates the photoperiodic response of FLOWERING LOCUS T [J]. Nature Communications, 2014, 5(1): 4558. [56] Zhao L, Wang S, Cao Z, Ouyang W, Li X. Chromatin loops associated with active genes and heterochromatin shape rice genome architecture for transcriptional regulation [J]. Nature Communications, 2019, 10(1): 3640. [57] Zhao L, Xie L, Zhang Q, Ouyang W, Deng L, Guan P, Ma M, Li Y, Zhang Y, Xiao Q. Integrative analysis of reference epigenomes in 20 rice varieties [J]. Nature Communications, 2020, 11(1): 2658. [58] Sun J, He N, Niu L, Huang Y, Shen W, Zhang Y, Li L, Hou C. Global quantitative mapping of enhancers in rice by STARR-seq [J]. Elsevier, 2019, 17 (2): 140–153. |
| [1] | WANG Ruo-xian, ZHU Rui-yan, KAI Guo-yin, SHI Min. Research Progress of PAL Gene and Its Function in Medicinal Plants [J]. Subtropical Plant Science, 2024, 53(2): 181-190. |
| [2] | TIAN Hui-yuan, TANG Bo-xi, WANG Yuan-xiu, LIU Fan, GUO Kai-yang, LIU Guo-qin. Effects of Exogenous Strigolactone on Axillary Bud Elongation and Expression of Genes Related to the Strigolactone Metabolic Pathway in Tobacco [J]. Subtropical Plant Science, 2023, 52(5): 369-380. |
| [3] | SHU Yan-qi, LUO Jia-jun, JIA Rong-li, DUAN Li-li, MO Ze-jun, LIU Ren-xiang. Effects of Drought Stress on Physiological and Biochemical Characteristics and NtDEGP5 Gene Expression [J]. Subtropical Plant Science, 2023, 52(1): 1-8. |
| [4] | ZHOU Jun-cheng, GUO Ya-li, CHEN Fa-yuan, ZHANG Heng, ZHU Di, PENG San-xi, GAO Huan-ye. Responses of Nicotine Key Enzyme Activities and Gene Expression to Compound Fertilizer Dosage and its Proportion in Basal Fertilizer [J]. Subtropical Plant Science, 2022, 51(5): 331-339. |
| [5] | CHU Hong-ye,. Effects of Different Light Intensities and Light Qualities on the Growth and the Accumulation of Volatile Oil Components of Artemisia argyi [J]. Subtropical Plant Science, 2022, 51(2): 92-101. |
| [6] | LUO An, ZUO Zi-yi, JIAO Xiong, LIU Xia. Cloning and Structural analysis of Zygote Expressed Gene NtZE1 in Nicotiana tabacum [J]. Subtropical Plant Science, 2019, 48(02): 103-108. |
| [7] | ZHOU Qiang,HAN Ying-ying. Research Advance on Plant Response to Low Temperature Stress and Its Ubiquitination [J]. , 2017, 46(02): 195-200. |
| [8] | ZHONG Xian,JIANG Lin-yu,PAN Dong-ming,PAN Teng-fei,BIAN A-na,. Cloning and Expression of ZDS Gene from Narcissus tazetta var. chinensis [J]. Subtropical Plant Science, 2013, 42(02): 97-103. |
| [9] | FAN Yu-qin. Brassinosteroids Signaling and Cell Expansion in Plant [J]. Subtropical Plant Science, 2007, 36(03): 80-84. |
| [10] | YU Guang-hui, LI Ling, ZENG Fu-hua. Gene expression and signal transduction under water stress [J]. Subtropical Plant Science, 2002, 31(01): 57-62. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||