[1] Cao J, Wang C, Xu S, Chen S T, Wang Y Z, Li Y, Sun X, Sun C D. The effects of transportation temperature on the decay rate and quality of postharvest ponkan (Citrus reticulata Blanco) fruit in different storage periods [J]. Scientia Horticulture, 2019, 247: 42–48.
[2] Bao Y, Yuan F, Zhao X, Liu Q, Gao Y. Equilibrium and kinetic studies on the adsorption debittering process of ponkan (Citrus reticulata Blanco) juice using macroporous resins [J]. Food and Bioproducts Processing. 2015, 94: 199–207.
[3] Bita C, Gerats T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress–tolerant crops [J]. Frontiers in Plant Science, 2013, 4: 273.
[4] Nievola C, Carvalho C, Carvalho V, Rodrigues E. Rapid responses of plants to temperature changes [J]. Temperature, 2017, 4(4): 371–405.
[5] Mathur S, Agrawal D, Jajoo A. Photosynthesis: Response to high temperature stress [J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 137: 116–126.
[6] Anderson C, Mattoon E, Zhang N, Becker E, Mchargue W, Yang J, Patel D, Dautermann O, Mcadam S, Tarin T, Pathak S, Avenson T, Berry J, Braud M, Niyogi K, Wilson M, Nusinow D, Vargas R, Czymmek K, Eveland A, Zhang R. High light and temperature reduce photosynthetic efficiency through different mechanisms in the C4 model Setaria viridis [J]. Communications Biology, 2021, 4: 1092.
[7] 邓平, 吴敏, 林丁, 赵英, 陆海娇, 岑英. 干旱–复水对桂西北喀斯特地区青冈栎幼苗叶片光合能力、叶绿素荧光和显微结构的影响[J]. 西北植物学报, 2024(1): 63–76.
[8] Santos S, Silva P, Garcia A, Zilli J, Berbara R. Dark septate endophyte decreases stress on rice plants [J]. Brazilian Journal of Microbiology, 2017, 48(2): 333–341.
[9] Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q, Pan J, Liu Y, Feng H. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants [J]. International Journal of Molecular Sciences, 2019, 20: 4199.
[10] Mathur S, Sharma M, Jajoo A. Improved photosynthetic efficacy of maize (Zea mays) plants with Arbuscular mycorrhizal fungi (AMF) under high temperature stress [J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 180: 149–154.
[11] Cheng S, Zou Y N, Ku?a K, Hashem A, Abd E F, Wu Q S. Elucidating the mechanisms underlying enhanced drought tolerance in plants mediated by Arbuscular mycorrhizal fungi [J]. Frontiers in Microbiology, 2021, 12: 809473.
[12] Ye Q H, Wang H, Li H. Arbuscular Mycorrhizal fungi improve growth, photosynthetic activity, and chlorophyll fluorescence of Vitis vinifera L. cv. ecolly under drought stress [J]. Agronomy, 2022, 12(7): 1563.
[13] Wu Q S, Xia R X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions [J]. Journal of Plant Physiology, 2006, 163(4): 417–425.
[14] Wu Q S, Zou Y N. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus [J]. Plant Soil and Environment, 2009, 55(10): 436–442.
[15] Huang Y M, Srivastava A, Zou Y N, Ni Q D, Han Y, Wu Q S. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange [J]. Frontiers in Microbiology, 2014, 5: 1–8.
[16] 武新英, 郝增超, 张璇, 郝芳华. 中国夏季复合高温干旱分布及变异趋势[J]. 水利水电技术, 2021, 52(12) : 90–98.
[17] 刘青, 黄京华, 李晓辉. 用玉米做宿主扩繁AMF菌剂的技术[J]. 安徽农学通报, 2007, 13(11): 46–47.
[18] Phillips J, Hayman D. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection [J]. Transactions of the British Mycological Society, 1970, 55: 158–161.
[19] 盛萍萍, 刘润进, 李敏. 丛枝菌根观察与侵染率测定方法的比较[J]. 菌物学报, 2021, 30(4): 519–525.
[20] 王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990(6): 55–57.
[21] Sima Y H, Yao J M, Hou Y S, Wang L, Zhao L C. Variations of hydrogen peroxide and catalase expression in Bombyx eggs during diapause initiation and termination [J]. Archives of Insect Biochemistry and Physiology, 2011, 77(2): 72–80.
[22] Spitz D, Oberley L. An assay for superoxide dismutase activity in mammalian tissue homogenates [J]. Analytical Biochemistry, 1989, 179(1): 8–18.
[23] Masayasu M, Hiroshi Y. A simplified assay method of superoxide dismutase activity for clinical use [J]. Clinica Chimica Acta, 1979, 92(3): 337–342.
[24] Johansson L, H?kan B. A spectrophotometric method for determination of catalase activity in small tissue samples [J]. Analytical Biochemistry, 1988, 174(1): 331–336.
[25] Daniel R, Rao L, Mona I. Identification of the colored guaiacol oxidation product produced by peroxidases [J]. Analytical Biochemistry, 1997, 250(1): 10–17.
[26] Andréia C, Gisele P, Silvia B, Carolina W, Fernanda L, Márcia M. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection [J]. Genetics and Molecular Biology, 2012, 35(4): 1011–1019.
[27] 张春楠, 张瑞芳, 王红, 周大迈, 王鑫鑫. 丛枝菌根真菌影响作物非生物胁迫耐受性的研究进展[J]. 微生物学通报, 2020, 47(11): 3880?3891.
[28] 张珊珊, 康洪梅, 杨文忠, 向振勇. 干旱胁迫下AMF对云南蓝果树幼苗生长和光合特征的影响[J]. 生态学报, 2016, 36(21): 6850–6862.
[29] 陈笑莹, 宋凤斌, 朱先灿, 刘胜群, 柏会子. 高温胁迫下丛枝菌根真菌对玉米光合特性的影响[J]. 华北农学报, 2013, 28(2): 108–113.
[30] Liu T, Sheng M, Wang C Y, Chen H, Li Z, Tang M. Impact of Arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery [J]. Photosynthetica, 2015, 53(2): 250–258.
[31] Pérez-Jiménez M, Hernández-Munuera M, Pinero M, López- Ortega G, Amor F. Are commercial sweet cherry rootstocks adapted to climate change? Short-term waterlogging and CO2 effects on sweet cherry cv. ‘Burlat’ [J]. Plant, Cell & Environment, 2017, 41(5): 908–918.
[32] Augé R, Toler H, Saxton A. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta analysis [J]. Mycorrhiza, 2015, 25 (1): 13–24.
[33] Azarabadi S, Abdollahi H, Torabi M, Salehi Z, Nasiri J. ROS generation, oxidative burst and dynamic expression profilesof ROS-scavenging enzymes of superoxide dismutase (SOD) catalase (CAT) and ascorbate peroxidase (APX) in responseto Erwinia amylovora in pear ( Pyrus communis L) [J]. European Journal of Plant Pathology, 2017, 147 (2): 279–294.
[34] Zheng G W, Tian B, Zhang F J, Tao F Q, Li W Q. Plant adaptation tofrequent alterations between high and low temperatures: remodelling of membranelipids and maintenance funsaturation levels [J]. Plant, Cell & Environment, 2011, 34(9): 1431–1442.
[35] Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS) [J]. Plant Gene, 2019, 19: 100182.
[36] Yu Y, Liu H, Zhang N, Gao C Q, Qi L W, Wang C. The BpMYB4 transcription factor from Betula platyphylla contributes toward abiotic stress resistance and secondary cell wall biosynthesis [J]. Frontiers in Plant Science, 2021, 11: 2242.
[37] Zhang A, Liu M.X, Gu W, Chen Z Y, Gu Y C, Pei L F, Tian R. Effect of drought on photosynthesis, total antioxidant capacity, bioactive component accumulation and the transcriptome of Atractylodes lancea [J]. BMC Plant Biology, 2021, 21: 293.
[38] Amiri R, Nikbakht A, Etemadi N. Alleviation of drought stress on rose geranium [Pelargonium graveolens (L.) Herit.] in terms of antioxidant activity and secondary metabolites by mycorrhizal inoculation [J]. Scientia Horticulturae, 2015, 197(14): 373–380.
[39] 梁圣敏, 张菲, 吴强盛. 丛枝菌根真菌通过调节枳根系多胺提高抗旱性[J]. 园艺学报, 2023, 50(12): 2680–2688.
[40] Essahibi A, Benhiba L, Babram M, Ghoulam C, Qaddoury A. Influence of Arbuscular mycorrhizal fungi on the functional mechanisms associated with drought tolerance in carob (Ceratonia siliqua L.) [J]. Trees, 2018, 32(1): 87–97.
|