Subtropical Plant Science ›› 2025, Vol. 54 ›› Issue (6): 729-734.DOI: 10.3969/j.issn.1009-7791.2025.06.014
• Reviews • Previous Articles
LI Yuan-yuan1, SHA Ai-long2*
Received:2025-06-19
Accepted:2025-08-09
Online:2025-12-31
Published:2025-12-31
Contact:
SHA Ai-long
李媛媛1,沙爱龙2*
通讯作者:
沙爱龙
基金资助:CLC Number:
LI Yuan-yuan, SHA Ai-long. 植物对声音的感知及发声机制研究进展[J]. Subtropical Plant Science, 2025, 54(6): 729-734.
李媛媛, 沙爱龙. 植物对声音的感知及发声机制研究进展[J]. 亚热带植物科学, 2025, 54(6): 729-734.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.yrdzwkx.com/EN/10.3969/j.issn.1009-7791.2025.06.014
| [1] Appel H, Cocroft R. Plant ecoacoustics: a sensory ecology approach [J]. Trends in Ecology & Evolution, 2023, 38(7): 623–630. [2] Wu L, Yang N, Guo M, Zhang D D, Ghiladi R A, Bayram H, Wang J. The role of sound stimulation in production of plant secondary metabolites [J]. Natural Products and Bioprospecting, 2023,13(1): 40. [3] Khait I, Obolski U, Yovel Y, Hadany L. Sound perception in plants [C]// Seminars in cell & developmental biology. Cambridge, Massachusetts: Academic Press, 2019: 134–138. [4] Bhandawat A, Jayaswall K. Biological relevance of sound in plants [J]. Environmental and Experimental Botany, 2022, 200: 104919. [5] Chowdhury M E K, Lim H S, Bae H. Update on the effects of sound wave on plants [J]. Research in Plant Disease, 2014, 20(1): 1–7. [6] Ghosh R, Mishra R C, Choi B, Kwon Y S, Bae D W, Park S C, Jeong M J, Bae H. Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis [J]. Scientific Reports, 2016, 6(1): 33370. [7] Hassanien R H E, Hou T Z, Li Y F, Li B M. Advances in effects of sound waves on plants [J]. Journal of Integrative Agriculture, 2014, 13(2): 335–348. [8] Hazama S, Omori K, Sakamoto R, Masugi M. Study on effect of artificial periodic sound on the growth of radish [J]. Environmental Control in Biology, 2024, 62(4): 101–104. [9] Kim J Y, Kim S K, Jung J, Jeong M J, Ryu C M. Exploring the sound-modulated delay in tomato ripening through expression analysis of coding and non-coding RNAs [J]. Annals of Botany, 2018,122(7): 1231–1244. [10] Hendrawan Y, Anniza K N, Prasetyo J, Damayanti R, Djoyowasito G. Effect of plant sound wave technology to increase productivity of mustard greens (Brassica juncea L.) [C]// IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020: 12. [11] Yu S M, Jiang S R, Zhu L F, Zhang J H, Jin Q Y. Effects of acoustic frequency technology on rice growth, yield and quality [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 141–147. [12] Solé M, Lenoir M, Durfort M, Fortuño J M, Van der Schaar M, De Vreese S, André M. Seagrass Posidonia is impaired by human- generated noise[J]. Communications Biology, 2021, 4(1): 743. [13] Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? [J]. Oikos, 2011,120(3): 321–326. [14] Nevard L, Russell A L, Foord K, Vallejo–Marín, M. Transmission of bee-like vibrations in buzz-pollinated plants with different stamen architectures [J]. Scientific Reports, 2021, 11(1): 13541. [15] Veits M, Khait I, Obolski U, Zinger E, Boonman A, Goldshtein A, Saban K, Seltzer R, Ben-Dor U, Estlein P, Kabat A, Peretz D, Ratzersdorfer I, Krylov S, Chamovitz D, Sapir Y, Yovel Y, Hadany L. Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration [J]. Ecology Letters, 2019, 22(9): 1483–1492. [16] Gagliano M, Grimonprez M, Depczynski M, Renten M. Tuned in: plant roots use sound to locate water [J]. Oecologia, 2017, 184(1): 151–160. [17] Lugli M, Fine M L. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams [J]. The Journal of the Acoustical Society of America, 2003, 114(1): 512–521. [18] Gagliano M, Mancuso S, Robert D. Towards understanding plant bioacoustics [J]. Trends in Plant Science, 2012, 17(6): 323–325. [19] Rodrigo-Moreno A, Bazihizina N, Azzarello E, Masi E, Tran D, Bouteau F, Baluska F, Mancuso S. Root phonotropism: early signalling events following sound perception in Arabidopsis roots [J]. Plant Science, 2017, 264: 9–15. [20] Kollasch A M, Abdul-Kafi A R, Body M J A, Pinto C F, Appel H M, Cocroft R B. Leaf vibrations produced by chewing provide a consistent acoustic target for plant recognition of herbivores [J]. Oecologia, 2020, 194: 1–13. [21] Body M J A, Neer W C, Vore C, Lin C H, Vu D C, Schultz J C, Cocroft R B, Appel H M. Caterpillar chewing vibrations cause changes in plant hormones and volatile emissions in Arabidopsis thaliana [J]. Frontiers in Plant Science, 2019, 10: 810. [22] Appel H M, Cocroft R B. Plants respond to leaf vibrations caused by insect herbivore chewing [J]. Oecologia, 2014, 175(4): 1257–1266. [23] Hou T Z, Li B M, Teng G H, Zhou Q, Xiao Y P, Qi L R. Application of acoustic frequency technology to protected vegetable production [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(2): 156–160. [24] Qi L, Teng G, Hou T, Zhu B, Liu X. Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse [C]// International Conference on Computer and Computing Technologies in Agriculture III: Third IFIP TC 12 International Conference, CCTA 2009, Beijing, China: Springer Berlin Heidelberg, 2010: 449–454. [25] Pinto C F, Torrico–Bazoberry D, Penna M, Cossio-Rodriguez R, Cocroft R, Appel H, Niemeyer H M. Chemical responses of Nicotiana tabacum (Solanaceae) induced by vibrational signals of a generalist herbivore [J]. Journal of Chemical Ecology, 2019, 45: 708–714. [26] Son J S, Jang S, Mathevon N, Ryu C M. Is plant acoustic communication fact or fiction? [J]. New Phytologist, 2024, 242(5): 1876–1880. [27] Simon R, Holderied M W, Koch C U, Von H O. Floral acoustics: Conspicuous echoes of a dish-shaped leaf attract bat pollinators [J]. Science, 2011, 80(333): 631–633. [28] Schöner M G, Schöner C R, Simon R, Grafe T U, Puechmaille S J, Ji L L, Kerth G. Bats are acoustically attracted to mutualistic carnivorous plants [J]. Current Biology, 2015, 25(14): 1911–1916. [29] Grafe T U, Schöner C R, Kerth G, Junaidi A, Schöner M G. A novel resource-service mutualism between bats and pitcher plants [J]. Biology Letters, 2011, 7(3): 436–439. [30] Kim J Y, Kang Y E, Lee S I, Kim J A, Muthusamy M, Jeong M J. Sound waves affect the total flavonoid contents in Medicago sativa, Brassica oleracea and Raphanus sativus sprouts [J]. Journal of the Science of Food and Agriculture, 2020, 100(1): 431–440. [31] Kim J Y, Lee S I, Kim J A, Muthusamy M, Jeong M J.Specific audible sound waves improve flavonoid contents and antioxidative properties of sprouts [J]. Scientia Horticulturae, 2021, 276: 109746. [32] Azgomi S, Iranbakhsh A, Majd A, Ebadi M, Oraghi A Z. The importance of sound rhythm: music and noise elicit different biological responses in Satureja hortensis L. [J]. Theoretical and Experimental Plant Physiology, 2023, 35(3): 215–232. [33] Jung J, Kim S K, Jung S H, Jeong M J, Ryu C M. Sound vibration-triggered epigenetic modulation induces plant root immunity against Ralstonia solanacearum [J]. Frontiers in Microbiology, 2020, 11: 1978. [34] Bhandawat A, Jayaswall K, Sharma H, Roy J. Sound as a stimulus in associative learning for heat stress in Arabidopsis[J]. Communicative & Integrative Biology, 2020, 13(1): 1–5. [35] López–Ribera I, Vicient C M. Drought tolerance induced by sound in Arabidopsis plants [J]. Plant Signaling & Behavior, 2017, 12(10): e1368938. [36] De Roo L, Vergeynst L L, De Baerdemaeker N J F, Steppe K. Acoustic emissions to measure drought-induced cavitation in plants [J]. Applied Sciences, 2016, 6(3): 71. [37] Khait I, Lewin-Epstein O, Sharon R, Saban K, Goldstein R, Anikster Y, Zeron Y, Agassy C, Nizan S, Sharabi G, Perelman R, Boonman A, Sada N, Yovel Y, Hadany L. Sounds emitted by plants under stress are airborne and informative [J]. Cell, 2023, 186(7): 1328–1336. [38] Khait I, Lewin-Epstein O, Sharon R, Saban K, PerelmanR, Boonman A, Yovel Y, Hadany L. Plants emit informative airborne sounds under stress [J]. bioRxiv, 2018: DOI: 10.1101/507590. [39] Dutta S, Chen Z, Kaiser E, Matamoros P M, Steeneken P, Verbiest G. Ultrasound pulse emission spectroscopy method to characterize xylem conduits in plant stems [J]. Research, 2023(1): 139–152. [40] De Roo L, Vergeynst L L, De Baerdemaeker N J F, Steppe K. Acoustic emissions to measure drought-induced cavitation in plants [J]. Applied Sciences, 2016, 6(3): 71. [41] Nardini A, Cochard H, Mayr S. Talk is cheap: rediscovering sounds made by plants [J]. Trends in Plant Science, 2024, 29(6): 662–667. [42] Rosner S. Characteristics of acoustic emissions from dehydrating wood related to shrinkage processes [J]. Journal of Acoustic Emission, 2007, 25: 149–156. [43] Yin J, Liu H, Jiao J J, Peng X J, Pickard B G, Genin G M, Lu T J, Liu S. Ensembles of the leaf trichomes of Arabidopsis thaliana selectively vibrate in the frequency range of its primary insect herbivore [J]. Extreme Mechanics Letters, 2021, 48: 101377. [44] Liu S, Jiao J, Lu T J, Xu F, Pickard B G, Genin G M. Arabidopsis leaf trichomes as acoustic antennae [J]. Biophysical Journal, 2017, 113(9): 2068–2076. [45] Peng X, Liu Y, He W, Hoppe E D, Zhou L, Xin F X, Haswell E S, Pickard B G, Genin G M, Lu T J. Acoustic radiation force on a long cylinder, and potential sound transduction by tomato trichomes [J]. Biophysical Journal, 2022, 121(20): 3917–3926. [46] Tooker J, Peiffer M, Luthe D S, Felton G W. Trichomes as sensors: detecting activity on the leaf surface [J]. Plant Signaling & Behavior, 2010, 5(1): 73–75. [47] Rodrigo-Moreno A, Bazihizina N, Azzarello E, Masi E, Tran D, Bouteau F, Baluska F, Mancuso S. Root phonotropism: early signalling events following sound perception in Arabidopsis roots [J]. Plant Science, 2017, 264: 9–15. [48] Ye Z, Yang R, Xue Y, Xu Z, He Y, Chen X, Ren Q, Sun J, Ma X, Hu J, Yang L. Evidence for the role of sound on the growth and signal response in duckweed [J]. Plant Signaling & Behavior, 2023, 18(1): 2163346. [49] Del Stabile F, Marsili V, Forti L, Arru L. Is there a role for sound in plants? [J]. Plants, 2022, 11(18): 2391. [50] Fullard J H, Dawson J W, Jacobs D S. Auditory encoding during the last moment of a moth's life [J]. Journal of Experimental Biology, 2003, 206(2): 281–294. |
| [1] | LIU A-mei, LI Zi-jun, TIAN Dai-ke. Development Status of IWGS International New Waterlily Competition and Characteristics of the Awarded Waterlily Cultivars [J]. Subtropical Plant Science, 2025, 54(2): 220-228. |
| [2] | CHEN Wei, LI Chu-ting, FU Qiang, LIU Xiu-qun. Study on the Spatial Distribution Pattern and Potential Distribution Area of National Key Protected Wild Plants in Shennongjia Forest Area [J]. Subtropical Plant Science, 2025, 54(1): 71-81. |
| [3] | HAO Sheng-jie, HOU Hai-qing, YIN Jie, LI Hong-sen, DU Yu-xin, JIN Feng-yang, LI Qian, CHEN Gui-lin. Ultrasound-Assisted Deep Eutectic Solvent Extraction of Gymnema sylvestre Polysaccharides and Its Activity Determination [J]. Subtropical Plant Science, 2024, 53(6): 545-553. |
| [4] | ZHAO Fa-fa, GUO Ye-hong, GAO Pei-wen, CHEN Jin-hui, ZHANG Wen-yao. Determination of 10 Phenylethanol Glycosides in Cistanche deserticola from Different Origins and 2 Species of Host Plants Based on UPLC-QQQ-MS/MS [J]. Subtropical Plant Science, 2024, 53(5): 399-407. |
| [5] | AN Qi, LIU Wen-lan. Investigation and Analysis of the Diversity of Self-Generated Herbaceous Plants in Three Universities in Lanzhou City [J]. Subtropical Plant Science, 2024, 53(3): 257-270. |
| [6] | WANG Ruo-xian, ZHU Rui-yan, KAI Guo-yin, SHI Min. Research Progress of PAL Gene and Its Function in Medicinal Plants [J]. Subtropical Plant Science, 2024, 53(2): 181-190. |
| [7] | LI Ling-zhi, LUO Si-si, WENG Shu-fei, LIANG Qian-tong, FENG Yong-sha. Growth Rhythm of Three Native Lianas from Guangzhou and Their Application in Landscape [J]. Subtropical Plant Science, 2023, 52(6): 534-539. |
| [8] | CAI Hong-li, OU Jing. Diversity of Understory Herbaceous Plants in Urban Forest Communities and Their Environmental Responses —the Case of Guiyang City [J]. Subtropical Plant Science, 2023, 52(5): 434-447. |
| [9] | WANG Tao, XIAO Ding-yong, HOU Xue-liang. Botanical Research on Rubus Species in An Illustrated Book on Plants [J]. Subtropical Plant Science, 2023, 52(4): 351-360. |
| [10] | YANG Ma-jin, HUANG Wen-juan, LI Zhen, TANG Xiao-hua, HAN Ju-lan, YE Chang-hua. Seed Germination of 14 Wild Functional Ornamental Herbaceous Species from the Northwest Sichuan [J]. Subtropical Plant Science, 2023, 52(3): 228-241. |
| [11] | WU Shi-yuan, CHEN Sheng-lai, LUO Sen-yuan, WANG Shuai. Species Diversity and Flora Analysis of Vascular Plants in Baichong Provincial Nature Reserve of Guangdong Province [J]. Subtropical Plant Science, 2023, 52(2): 149-156. |
| [12] | LIANG Dan, CHEN Jun-ting, WANG Zhen-zhen, JIANG Piao, LI Zhuo-ran, WENG Shu-fei. Analysis on Geographical Components and Garden Application Potential of Aromatic Plants in Guangdong Province [J]. Subtropical Plant Science, 2023, 52(2): 157-163. |
| [13] | ZHU Hui-ling, LIU Jin-gang, WONG Chuk-kwan, Craig WILLIAMS, HANG King-yeung, ZHANG Jin-long, Stephan W. GALE. Additions to the Flora of Hong Kong, China [J]. Subtropical Plant Science, 2023, 52(1): 70-77. |
| [14] | YANG An-hua,CHEN Zhu-feng, TAN Gan, YANG Yuan-zhi, HU Yu-hua, YANG Jin-chang, TANG Guang-da. Species and Distribution Pattern of the State Key Protected Wild Plants (2021 edition) in Guangdong [J]. Subtropical Plant Science, 2022, 51(6): 474-480. |
| [15] | WEN Zhi-tao, LIN Jin-fan, WANG Chu-cheng, MIAO Shen-yu, YUAN Shou-qian, LIU Chuang. Rare and Endangered Plant Resources in Luofu Mountain Provincial Nature Reserve, Guangdong [J]. Subtropical Plant Science, 2022, 51(6): 481-488. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||