[1] Roddy A B, Jiang G F, Cao K, Simonin K A, Brodersen C R. Hydraulic traits are more diverse in flowers than in leaves [J]. New Phytologist, 2019, 223: 193–203.
[2] Shi X, Wang J, Zhang D, Liu H. The reproductive traits of rare desert species Eremosparton songoricum (Fabaceae) at two sites with different soil water content [J]. Vegetos, 2013, 26: 1–8.
[3] Gallagher M K, Campbell D R. Shifts in water availability mediate plant–pollinator interactions [J]. New Phytologist, 2017, 215: 792–802.
[4] Sosenski P, Parra-Tabla V. Secondary Metabolites: Attracting Pollinators, in eLS [M]. Chichester, UK: John Wiley & Sons, 2019: 1–9.
[5] Niklas K J. Plant Allometry: the Scaling of Form and Process [M]. Chicago, IL, USA: University of Chicago Press, 1994: 3–12.
[6] Strauss S Y, Whittall J B. Non-pollinator Agents of Selection on Floral Traits [M]. Oxford, UK: Oxford University Press, 2006: 120–138.
[7] ?gren J. Pollinators, herbivores, and the evolution of floral traits [J]. Science, 2019, 364: 122–123.
[8] Spigler R B, Woodard A J. Context-dependency of resource allocation trade-offs highlights constraints to the evolution of floral longevity in a monocarpic herb [J]. New Phytologist, 2019, 221: 2298–2307.
[9] Weiss M. Floral colour changes as cues for pollinators [J]. Nature, 1991, 354: 227–229.
[10] Primack R. Longevity of individual flowers [J]. Annual Review of Ecology, Evolution, and Systematics, 1985, 16: 15–37.
[11] Schoen D J, Ashman T L. The evolution of floral longevity resource allocation to maintenance versus construction of repeated parts in modular organisms [J]. Evolution, 1995, 49: 131–39.
[12] Zhang F P, Yang Y J, Yang Q Y, Zhang W, Brodribb T J, Hao G Y, Hu H, Zhang S B. Floral mass per area and water maintenance traits are correlated with floral longevity in Paphiopedilum (Orchidaceae) [J]. Frontiers in Plant Science, 2017, 8: 501.
[13] Gao J, Xiong Y, Huang S. Effects of floral sexual investment and dichogamy on floral longevity [J]. Journal of Plant Ecology, 2015, 8: 116–121.
[14] Müller I, Schmid B, Weiner J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants [J]. Perspectives in Plant Ecology Evolution and Systematics, 2000, 3: 115–127.
[15] 苏梅, 齐威, 阳敏, 杜国祯. 青藏高原东部大通翠雀花的花特征和繁殖分配的海拔差异[J]. 兰州大学学报(自然科学版), 2009(2): 61–65.
[16] 张茜, 赵成章, 马小丽, 侯兆疆, 李钰. 高寒草地狼毒种群繁殖分配对海拔的响应[J]. 生态学杂志, 2013(2): 247–252.
[17] González-Varo J P, Biesmeijer J C, Bommarco R, Potts S G, Schweiger O, Smith H G, Steffan-Dewenter I, Szentgyorgi H, Woyciechowki M, Vila M. Combined effects of global change pressures on animal-mediated pollination [J]. Trends in Ecology and Evolution, 2013, 28: 524–530.
[18] Phillips B B, Shaw R F, Holland M J, Fry E L, Bardgett R D, Bullock J M, Osborne J L. Drought reduces floral resources for pollinators [J]. Global Change Biology, 2018, 24: 3226–3235.
[19] Moyroud E, Glover B J. The evolution of diverse floral morphologies [J]. Current Biology, 2017, 27: R941–R951.
[20] Cuartas-Domínguez M, Robles V, Arroyo M T K. Large flowers can be short–lived: Insights from a high Andean cactus [J]. Ecology and Evolution, 2022, 12: e9231.
[21] Stanton M L, Snow A A, Handel S N. Floral evolution: attractiveness to pollinators increases male fitness [J]. Science, 1986, 232: 1625–1627.
[22] Brown B A, Clegg M T. Influence of flower color polymorphism on genetic transmission in a natural population of the common morning glory, Ipomoea purpurea [J]. Evolution, 1984, 38: 796–803.
[23] Eckhart V M, Rushing N S, Hart G M, Hansen J D. Frequency- dependent pollinator foraging in polymorphic Clarkia xantiana ssp. xantiana populations: implications for flower colour evolution and pollinator interactions [J]. Oikos, 2006, 112: 412–421.
[24] Streisfeld M A, Kohn J R. Environment and pollinator– mediated selection on parapatric floral races of Mimulus aurantiacus [J]. Journal of Evolutionary Biology, 2007, 20: 122–132.
[25] Hirota S K, Nitta K, Kim Y, Kato A, Kawakubo N, Yasumoto A A, Yahara T. Relative role of flower color and scent on pollinator attraction: experimental tests using F1 and F2 hybrids of daylily and nightlily [J]. PLoS One, 2012, 7: e39010.
[26] Larsson M C, Madjidian J A, Lankinen ?. Floral scent and pollinator visitation in relation to floral colour morph in the mixed-mating annual herb Collinsia heterophylla [J]. Nordic Journal of Botany, 2021, 39(4): 3025.
[27] Delle-Vedove R, Juillet N, Bessière J, Grison C, Barthes N P, Pailler T, Dormont L, Schatz B. Colour-scent associations in a tropical orchid: Three colours but two odours [J]. Phytochemistry, 2011, 72: 735–742.
[28] Fan X Q, Trunschke J, Ren Z X, Wang H, Pyke G H, van der Kooi C J, Lunau K. Why are the inner and outer sides of many flower petals differently coloured? [J]. Plant Biology, 2024, 26: 665–674.
[29] Fishbein M, Livshultz T, Straub S C K, Sim?es A O, Boutte J, McDonnell A, Foote A. Evolution on the backbone: Apocynaceae phylogenomics and new perspectives on growth forms, flowers, and fruits [J]. American Journal of Botany, 2018, 105: 495–513.
[30] Roddy A B, Martínez-Perez C, Teixido A L, Cornelissen T G, Olson M E, Oliveira R S, Silveira F A O. Towards the flower economics spectrum [J]. New Phytologist, 2021, 229: 665–672.
[31] Zhu H, Cao M, Hu H. Geological history, flora, and vegetation of Xishuangbanna, Southern Yunnan, China [J]. Biotropica, 2006, 38: 310–317.
[32] 沙丽清, 孟盈, 冯志立, 郑征, 曹敏, 刘宏茂. 西双版纳不同热带森林土壤氮矿化和硝化作用研究[J]. 植物生态学报, 2000(2): 152–156.
[33] Ashman T L, Schoen D J. How long should flowers live? [J]. Nature, 1994, 371: 788–791.
[34] Evanhoe L, Galloway L F. Floral longevity in Campanula americana (Campanulaceae): a comparison of morphological and functional gender phases [J]. American Journal of Botany, 2002, 89: 587–591.
[35] Cuthill I C, Bennett A T D, Partridge J C, Maier E J. Plumage reflectance and the objective assessment of avian sexual dichromatism [J]. The American Naturalist, 1999, 153: 183–200.
[36] Grill C P, Rush V N. Analysing spectral data: comparison and application of two techniques [J]. Biological Journal of the Linnean Society, 2000, 69: 121–138.
[37] Montgomerie R. Analyzing colors [M]. Massachusetts, USA: Harvard University Press, 2006: 90–147.
[38] Maia R, Gruson H, Endler J A, White T E. pavo 2: New tools for the spectral and spatial analysis of colour in R [J]. Methods in Ecology and Evolution, 2019, 10: 1097–1107.
[39] Jin Y, Qian H. U. PhyloMaker: an R package that can generate large phylogenetic trees for plants and animals [J]. Plant Diversity, 2022, 45: 347–352.
[40] Zhang J, Qian H. U. Taxonstand: an R package for standardizing scientific names of plants and animals [J]. Plant Diversity, 2022, 45: 1–5.
[41] Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R [J]. Bioinformatics, 2019, 35: 526–528.
[42] Revell L J. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things) [J]. Peer J, 2024, 12: e16505.
[43] R Development Core Team. 2023. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available: http://www. R–project.org/
[44] Wang Y, Zhang C F, Ochieng Odago W, Jiang H, Yang J X, Hu G W, Wang Q F. Evolution of 101 Apocynaceae plastomes and phylogenetic implications [J]. Molecular Phylogenetics and Evolution, 2023, 180: 107688.
[45] Darwin C R. The various contrivances by which orchids are fertilised by insects [M]. London: John Murray, 1877:130–156.
[46] Xiong W, Ollerton J, Liede–Schumann S, Zhao W, Jiang Q, Sun H, Liao W, You W. Specialized cockroach pollination in the rare and endangered plant Vincetoxicum hainanense in China [J]. American Journal of Botany, 2020, 107: 1355–1365.
[47] Ollerton J, Liede-Schumann S, Endress M E, Meve U, Rech A R, Shuttleworth A, Keller H A, Fishbein M, Alvarado-Cárdenas L O, Amorim F W, Bernhardt P, Celep F, Chirango Y, Chiriboga-Arroyo F, Civeyrel L, Cocucci A, Cranmer L, da Silva-Batista I C, de Jager L, Deprá M S, Quirino Z. The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study [J]. Annals of Botany, 2019, 123: 311–325.
[48] Bitencourt C, Nürk N M, Rapini A, Fishbein M, Sim?es A O, Middleton D J, Meve U, Endress M E, Liede-Schumann S. Evolution of dispersal, habit, and pollination in Africa pushed Apocynaceae diversification after the Eocene-Oligocene climate transition [J]. Frontiers in Ecology and Evolution, 2021, 9: 719741.
[49] Warren J, Mackenzie S. Why are all colour combinations not equally represented as flower-colour polymorphisms? [J]. New Phytologist, 2001, 151: 237–241.
[50] Dick C, Buenrostro J D, Butler T M, Carlson M, Kliebenstein D J, Whittall J B. Arctic mustard flower color polymorphism controlled by petal-specific downregulation at the threshold of the anthocyanin biosynthetic pathway [J]. PLoS ONE, 2011, 6: e18230.
[51] Ulrich W, Kusumoto B, Shiono T, Fuji A, Kubota Y. Latitudinal gradients of reproductive traits in Japanese woody plants [J]. Ecological Research, 2022, 38: 188–199.
[52] Reznick D N. Costs of reproduction: an evaluation of the empirical evidence [J]. Oikos, 1985, 44: 257–267.
[53] Obeso J R. The costs of reproduction in plants [J]. New Phytologist, 2002, 155: 321–348.
[54] Reich P B,Cornelissen H. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto [J]. Journal of Ecology, 2014, 102(2): 275-301.
[55] 黄双全, 郭友好. 传粉生物学的研究进展[J]. 科学通报, 2000, 3: 225–237.
|